内容标题17

  • <tr id='pX9s3Y'><strong id='pX9s3Y'></strong><small id='pX9s3Y'></small><button id='pX9s3Y'></button><li id='pX9s3Y'><noscript id='pX9s3Y'><big id='pX9s3Y'></big><dt id='pX9s3Y'></dt></noscript></li></tr><ol id='pX9s3Y'><option id='pX9s3Y'><table id='pX9s3Y'><blockquote id='pX9s3Y'><tbody id='pX9s3Y'></tbody></blockquote></table></option></ol><u id='pX9s3Y'></u><kbd id='pX9s3Y'><kbd id='pX9s3Y'></kbd></kbd>

    <code id='pX9s3Y'><strong id='pX9s3Y'></strong></code>

    <fieldset id='pX9s3Y'></fieldset>
          <span id='pX9s3Y'></span>

              <ins id='pX9s3Y'></ins>
              <acronym id='pX9s3Y'><em id='pX9s3Y'></em><td id='pX9s3Y'><div id='pX9s3Y'></div></td></acronym><address id='pX9s3Y'><big id='pX9s3Y'><big id='pX9s3Y'></big><legend id='pX9s3Y'></legend></big></address>

              <i id='pX9s3Y'><div id='pX9s3Y'><ins id='pX9s3Y'></ins></div></i>
              <i id='pX9s3Y'></i>
            1. <dl id='pX9s3Y'></dl>
              1. <blockquote id='pX9s3Y'><q id='pX9s3Y'><noscript id='pX9s3Y'></noscript><dt id='pX9s3Y'></dt></q></blockquote><noframes id='pX9s3Y'><i id='pX9s3Y'></i>

                ?东吴↓商学院学术讲座——谭寅亮博士

                发布者:殳妮   发布时间:2020-12-09   浏览次数:85

                快三学术◇讲座——谭寅亮


                报告题目When to Play Your Advertisement? Optimal Insertion Policy of Behavioral 

                报告时间2020121010:00-11:30

                报告地点:Online(腾讯会议,会议 ID:666 642 978,会议密码:1210)

                报告摘要:

                Digital advertisements offer a full spectrum of behavioral customization for timing and content capabilities. The existing research in display advertising has predominantly concentrated on the content of advertising; however, our focus is on optimizing the timing of display advertising. In practice, users are constantly adjusting their engagement with content as they process new information continuously. The recent development of emotional tracking and wearable technologies allows platforms to monitor the user’s engagement in real time. We model the user’s continuous engagement process through a Brownian motion. The proposed optimal policy regarding the timing of behavioral advertising is based on a threshold policy with a trigger threshold and target level. Our results reveal that for a wide range of settings, the proposed policy not only significantly increases the platform’s profitability, but also improves the completion rate at which consumers finish viewing the advertisement.

                报告人简介:

                谭寅亮是美国杜兰大学弗〖里曼商学院管理科学方向助理教授,戈德〓林国际教育中心行政主任。谭寅亮博士毕业于美国佛罗里达大学,学习运营管理及信息系统①。他拥有丰富的商业分析方面的教学经验,获得过弗里曼商学院最佳教师奖♂。其研究兴趣主要集中〒在科技管理与创新,电子产品※定价,以及人工智能领域。他在国际顶】级期刊Management Science, MIS Quarterly, Information Systems Research, Production and Operations Management多次发表论︻文。现在担任Production and Operations Management的资深编辑以及∑Decision Science和Information & Management的副编辑。他于2019年被评为世√界最佳40名40岁以下的商学院教授,也是杜兰大学历史上第一个获此殊荣的教授。